Water Quality Data Report For The Norwalk River Watershed May 2008 through September 2008

HW/RW volunteer Dave Perman at Site NR6

Submitted by:

Richard Harris, Principal Investigator, Staff Scientist/Director of the Harbor Watch/River Watch Program at Earthplace, Westport, CT, Phone (203) 227-7253

Peter Fraboni, Associate Director & QA/QC Officer for the Harbor Watch/River Watch program at Earthplace, Westport, CT

Eric Sroka, Coastal Studies Technician Officer for the Harbor Watch/River Watch program at Earthplace, Westport, CT

Funded by: The Fairfield County Community Foundation, The Wilton Conservation Department, King Industries, Norwalk River Watershed Association, Inc., NRG-Manresa, Town of Ridgefield, Norm Bloom, Leslie Bloom, and The Jeniam Foundation To: The Fairfield County Community Foundation, The Wilton Conservation Department, King Industries, Norwalk River Watershed Association, Inc., NRG-Manresa, Town of Ridgefield, Norm Bloom, Leslie Bloom, and The Jeniam Foundation

From: Dick Harris, Principal Investigator, Earthplace, Harbor Watch/River Watch Program

Date: December 10, 2008

Subject: The Norwalk River Watershed Project Water Quality Report for the period of May 1, 2008 through September 30, 2008

I. Introduction:

<u>Purpose of Study</u>: The Earthplace Harbor Watch/River Watch (HW/RW) Program was funded by the Connecticut Department of Environmental Protection (CT DEP) to conduct water quality monitoring on the Norwalk River for six years, June 1998 through June 2005. HW/RW collected and analyzed water samples for both fecal coliform bacteria and *Escherichia coli* (*E. coli*) bacteria at a total of ten sites, nine of them along the main stem of the Norwalk River and one on the Silvermine River (Figure A2).

<u>Background</u>: From June 1998 through May 1999, HW/RW conducted a first-year water quality monitoring study in the Norwalk River Watershed. This study was funded by the CT DEP and was intended to provide water quality information in support of the Norwalk River Watershed Initiative. The purpose of the study was to obtain data on the levels of fecal coliform bacteria, dissolved oxygen, and conductivity at selected locations in the Norwalk River and in its major tributaries (Silvermine River, Comstock Brook and Cooper Brook). The study indicated that fecal coliform bacteria levels frequently exceeded the state's water quality criterion for Class B water at a number of sites along the Norwalk River. Most sites met the dissolved oxygen level CT DEP criterion for Class B waters. The first year study also showed that conductivity levels were consistently higher in the upper reaches of the watershed than in the lower watershed. Based upon the water quality data collected, HW/RW determined that the water quality in the Norwalk River Watershed was moderately impaired.

The CT DEP and HW/RW executed a contract for the second year funding in September 1999; the second year monitoring period was from September 1, 1999 through November 30, 2000. HW/RW was authorized to begin testing for *E. coli* bacteria in November 1999. Sampling took place at 12 sites along the Norwalk River. Monthly reports were prepared and submitted to the CT DEP and disseminated to the seven towns comprising the Norwalk River Watershed as well as the Norwalk River Watershed Initiative Advisory Committee.

Funding was then made available by the CT DEP to continue testing on the Norwalk River for a third summer (April 1 to September 30, 2001) based on a continuing interest by Norwalk River Watershed Advisory Committees and the CT DEP. The same testing protocols used in 2000 by HW/RW were again used under the original QAPP, which was extended on April 25, 2001 to September 30, 2001 by the EPA's Office of Environmental Measurement and Evaluation.

During 2002, the CT DEP switched to *E. coli* bacteria as the "preferred" indicator species for freshwater. *E.* coli is one of the two bacteria components of the fecal coliform bacteria group, and it is a more specific indicator of fecal material arising from humans and other warm-blooded animals. For recreational waters, the US EPA recommends the use of *E. coli* because it is a better indicator of a human health risk from water contact than fecal coliform bacteria (Table 1).

Additional 319 funding was allocated to continue the HW/RW testing regime on the Norwalk River for twenty-three months beginning July 2002 and ending June 30, 2004. The last contract with the CT DEP expired on 6/30/05. Renewed testing of the Norwalk River and its tributaries began on May 1,

2005 based on the interest and generosity of the Town of Wilton, The Norwalk River Watershed Association, King Industries, and NRG Inc. at Manresa. The Fairfield County Community Foundation, the Town of Ridgefield, the Wilton Inland Conservation District, Leslie Bloom and Norman Bloom have provided additional funds to support the 2007/2008 monitoring season.

Although these monthly reports are submitted to the CT DEP for review and comment, Harbor Watch/River Watch is solely responsible for the collection, analysis and interpretation of the water quality data.

II Methods and Procedures:

Water monitoring is carried out under protocols of an EPA approved and revised EPA Quality Assurance Project Plan (QAPP). Monitoring teams leave the Earthplace in Westport between 9:30AM and 10:00AM, and return in early afternoon. Each team is comprised of an experienced leader and one or two trained volunteers. Water samples are collected at 12 (Figure A2) monitoring sites within the watershed (QAPP Appendix A1.1). These sites, which represent the more impacted areas, were selected in concert with the CT DEP, because results from the first year's study consistently demonstrated elevated fecal coliform bacteria counts at these locations. In addition to focusing monitoring efforts at these sites, it was determined to analyze for both fecal coliform and *E. coli* bacteria.

The following tests are run *in situ*: dissolved oxygen (QAPP Appendix A3.1) and conductivity (QAPP Appendix A3.5). Water and air temperatures, as well as general observations and storm events are also recorded at each site visit. Observations are recorded (QAPP Appendix 5) on the HW/RW Data Sheet.

Upon return to the lab, fecal coliform and *E. coli* bacteria membrane filtration tests (QAPP Appendix A3.10) are performed and analyzed according to Standard Methods, 21^{th} edition (9222D & 9222G) and recorded (QAPP Appendix 5) on the HW/RW bacteria log. The frequency of which water quality monitoring for bacteria concentrations occurs is separated into two seasonal testing periods. For the period when the three wastewater treatment plants (WTP) are required to disinfect their wastewater effluent (April 1st to October 30th) monitoring is done four times per month. For the period when effluent disinfection is not required (November 1st to March 31st) monitoring is done monthly.

E. coli bacteria will be evaluated using the criteria published in the CT DEP Surface Water Quality Standards, 12/17/02. The CT DEP *E. coli* criteria for Class AA, A, and B water are established at three levels (Table 1).

Designated Use Recreation	Class	Indicator	Criteria
Designated Swimming	AA, A, B	Escherichia	Geometric Mean less than 126
		coli	CFUs/100mLs; Single Sample
			Maximum 235 CFUs/100mLs
Non-designated Swimming	AA, A, B	Escherichia	Geometric Mean less than 126
		coli	CFUs/100mLs; Single Sample
			Maximum 410 CFUs/100mLs
All Other Recreational Uses	AA, A, B	Escherichia	Geometric Mean less than 126
		coli	CFUs/100mLs; Single Sample
			Maximum 576 CFUs/100mLs

Table 1 CT DEP criterion for *E. coli* bacteria levels as applied to recreational use, effective 12/17/02

The Norwalk River is classified by the CT DEP for "Non-designated swimming" because people still swim in the river. The report will focus on *E. coli* bacteria levels, because it is the indicator bacteria of choice by the CT DEP. Fecal coliform bacteria levels are reported on Table B1 only as additional data for those who may be interested.

III. Results:

All monitoring sites with the exception of the Ridgefield waste water treatment plant (WTP) exceeded the CT DEP Class B river criterion for *E.coli* bacteria, including the geometric mean of <126 CFUs/100mLs and the single sample maximum (SSM) of <410 CFUs/100mLs (Table 1, Table 2, Figure 1).

All dissolved oxygen (DO) means met the CT DEP DO criterion of 5 mg/L or greater for a class B river. Observed individual DO values met the DO criteria at all monitoring sites with the exception of site NR21 and NR20 at the headwaters of the Norwalk River (Figure 2, Table 3, and Table B1).

Table 3 Monitoring sites, dates and values of DO (mg/L) not meeting the CT DEP DO criterion of 5 mg/L

Dates	7/27	8/7	8/27	9/10	9/18
Site NR21	4.3	3.5	4.6	1.9	3.7
Site NR20				2.6	

The mean values of observed conductivity at the headwaters ranged from a maximum of 870 μ S at Site NR23 to a minimum of 226 μ S at Site SM3, which is located near the mouth of the Silvermine River (Figure 3, Appendix A2, and Table B1). Observed conductivity ranges at individual sties are more extreme at the headwaters of the Norwalk River, *i.e.* the conductivity range at SiteNR23 is 447 μ S with a maximum of 1024 μ S observed on 9/24 and a minimum of 577 μ S observed on 9/10 (Figure 3, Table B1). Conversely, conductivity values observed on the lower end of the watershed at Site SM3 showed a very short range of 63 μ S with a maximum of 250 μ S observed on 9/4 and a minimum of 187 μ S observed on 9/10 (Figure 3, Table B1).

Water samples from all 12 sampling sites were analyzed for total nitrogen (TN) and total phosphorous (TP) on 5/1, 6/19, 8/21 and 9/24 (Table 4, Figure 4), thanks to funding provided by NRG Inc. Two additional monitoring sites were later added for this series of tests. These sites are NR16, which is the effluent discharge from the Route 7 WTP in the Town of Ridgefield, and NR9.8, which is the effluent discharge from the Georgetown WTP (Appendix A2). Discharges of TN at two of the WTP (Site NR22 and NR16) remain relatively constant in the range of 4 ppm and 12 ppm respectively (Figure 4). The observed TN in the Georgetown WTP effluent changed over the four dates from a minimum of 0.57 ppm to a maximum of 9.10 ppm.¹ The observed TN value of 17.2 ppm on 8/21 at Site SM3 is a maximum value for the entire nutrient project and does not represent a WTP discharge (Figure 4).

Elevated TP levels were observed on May 1 in effluent discharges at Site NR16 and NR9.8 to be5.40 mg/L and 5.20 mg/L respectively (Table 4). On June 19, observed TP values at Site NR9.8 were below minimum detection limits (MDL) and concentrations remained there for the monitoring dates of 8/21 and 9/24. Site NR16 is the only WTP of the three units discharging elevated TP levels in the effluent at every sampling event during the testing period, (Table 4).

¹ The Georgetown WTP is a newly installed *Zenon* (General Electric) unit undergoing start up procedures. This is a possible cause of nutrient variation in the effluent.

Table 2 May 2008 through September 2008 *E. coli* bacteria concentrations, geometric means and % frequency exceeding 410 colonies/100 mLs at 12 sampling sites in the Norwalk River Watershed for the period of time when the two Ridgefield and the Georgetown wastewater treatment facilities are required by NPDES permits to disinfect effluent discharges

	Dates														
Sites	5/1/2008	5/7/2008	5/15/2008	5/21/	2008	6/4/2	800	6/11/20	08	6/19/2008	6/25/2008	7/2/2008	7/9/2008	7/17/2008	7/23/2008
NR23	60	40	76	14	40	170	00	1100		130	360	n/a	146	148	2300
NR22	0	0	0	(2	1		1		0	0	0	0	1	n/a
NR21	68	32	76	14	18	180	00	780		130	52	480	180	252	9800
NR20	88	28	108	16	58	320	00	930		270	158	420	136	88	80
NR15	56	36	88	10)8	47	0	400		190	124	n/a	760	164	500
NR13	520	26	156	9	2	60	0	730		270	320	1100	232	144	460
NR9.5	94	18	56	8	8	40	0	340		92	156	1760	146	140	570
NR9	108	32	68	10)4	260	00	500		200	140	n/a	68	88	380
NR6	104	68	212	14	18	120	00	810		430	272	1060	360	168	3800
NR4	120	112	360	22	28	130	00	330		170	380	800	440	380	6100
	84	96	124	1	12	310	00	430		520	220	460	900	6700	1100
	12	90	00		00	140		500		550	170	2000	200	210	0300
8/7/2008	8/13/2008	8/20/2008	3 8/27/2	008	9/4/2	2008	9/1	0/2008	9/	18/2008	9/24/2008	Geomear	%freque 4 colonies	ency over 10 s/100mLs	
260	460	144	320)	64	40		400		100	152	244	21.0	05%	
0	0	0	0		()		0		0	0		0.0	0%	
190	200	110	140)	15	50		30		120	44	175	20.0	00%	
100	160	80	40		2′	12		130		120	108	152	15.0	00%	
420	160	232	140)	48	30		220		170	340	203	25.0	00%	
290	160	244	360)	4(00		180		160	124	247	25.0	00%	
150	220	88	158		36	00		356		96	156	188	15.0	00%	
100	180	68	38		22	200		260		112	72	155	15.0	00%	
470	470	220	180)	17	'00		390		220	248	367	40.0	00%	
200	300	210	140)	78	80		330		380	360	363	25.00%		
900	290	210	68		14	44		330		90	148	320	40.0	00%	
500	550	320	760)	10	80		380	1	28000	31000	648	55.	00%	

Table 4 Observed Total phosphorous (TP) values, mg/L at three WTP effluent discharges and two sampling sites on 5/1, 6/19, 8/21, and 9/24/2008

WTP	Site Number	TP mg/L on 5/1	TP mg/L on 6/19	TP mg/L on 8/21	TP mg/L on 9/24
Ridgefield	NR22	ND*	ND*	ND*	ND*
Route 7	NR16	5.40	5.15	5.07	4.57
	NR15	ND*	ND*	0.13	ND*
Georgetown	NR9.8	5.20	ND*	ND*	ND*
	NR1	ND*	ND*	ND*	0.32

* Non-detectable, minimum detection level is .05 mg/L at York laboratories, Inc.

Figure 1 Maximum, geometric means, and minimum values of *E. coli* bacteria concentrations at 12 monitoring sites in the Norwalk River Watershed from May 2008 through September 2008 when the two Ridgefield and one Georgetown wastewater treatment facilities are required by NPDES permits to disinfect sewage effluent

^aCT DEP geomean maximum value for a Class B river

^b no *E. coli* bacteria was detected in the Ridgefield Wastewater effluent Site NR22

^aCT DEP minimum value for a Class B river

Figure 4 Total nitrogen concentrations observed at 14 monitoring sites in the Norwalk River Watershed on May 1, 2008, June 19 2008, August 21, 2008, and September 24, 2008

Figure 5 Monthly rainfall (inches) from May 2008 to September 2008

IV. Discussion:

Rainfall during May through August 2008 averaged 2.9 inches per month which is dry for the period.² September 2008 marked an end to the dry period with 9.1 inches of rainfall; however, 5.3 inches fell on 9/6. Much of this storm contributed to heavy runoff with relatively little soak time benefiting the Norwalk River watershed.

Observed *E.coli* bacteria levels were increased by heavy storms on 6/4, 7/2, 7/23 and $9/4^3$. In addition to the rain days, attention is drawn to elevated bacteria numbers not affected by rain. On 9/18 and 9/24 elevated *E.coli* counts of 28,000 CFUs/100 mL and 31,000 CFUs/100 mLs respectively led HW/RW to discover an ongoing sewage discharge at the School Street storm drain discharge (Table 2 and Figure1). These data were reported to the Norwalk Public Health Department who then alerted the city's Public Works Department. Fast acting by the Norwalk Public Works Department discovered a temporary sewage bypass line accidently connected to the School Street storm drain system. It was estimated that over 400,000 gallons of sewage entered the lower river/ upper harbor before HW/RW identified the polluting discharge point.⁴

The elevated *E.coli* bacteria counts observed at Site SM3 on the Silvermine River on 7/9 and 7/17 of 900 and 6700 CFU/100mLs respectively, cannot be explained (Table 2 and Table B1). Rainfall on both dates occurred at least three days prior to monitoring the site (Table 2, Table B1). In addition, an elevated TN result of 17.3 mg/L observed at the same site on 8/21 (Figure 4) also suggests that a pollution source existed upstream. These events will be investigated in future research.

Observed DO means and most of the individual samples met the CT DEP criterion of 5 mg/L or greater for a class B river (Figure 2). Values observed below 5 mg/L at Site 21 are probably due to standing water conditions in the Great Swamp (Appendix 2A) on warm days prior to its discharge at Site NR21. A low DO concentration (1.9 mg/L) observed at Site NR21 on 9/10 also impaired the water quality downstream, which resulted in a DO concentration of 2.6 mg/L observed at Site NR20 (Figure 2, Table B1).

Observed conductivity means and individual values were typical for the Norwalk River during the summer season. Higher conductivity mean values, (700 μ S) observed at Site NR23 were related to

² Rainfall records were provided by the Norwalk Public Health Dept.

³ The HW/RW monitoring date did not coincide with the large storm (5.3 inches) on 9/6.

⁴ Details of this spill are found in Silvermine/Norwalk water quality report (6/2/08 - 7/31/08)

water moving through natural limestone beds (Figure 3) in the headwaters of the Norwalk River. As the Norwalk River flows to the south, several tributaries with lower conductivity means serve to reduce conductivity values in the main river. This condition is apparent at Site NR15 where an unnamed tributary joins the main river just to the north of the site (Figure 3). Other instances are Cooper Brook where it enters the river prior to Site NR13 and the Silvermine River, where it enters the main river 3).

Heavy rainfall events serve to reduce conductivity, as noted on 9/10 when a rainfall of 0.34 inches fell on the monitoring date (Figure 3, Table B1). The higher values were observed on 8/20 and 8/27 when there was little to no rain prior to the monitoring date (Figure 3, Table B1).

The analysis of water samples for total nitrogen (TN) and total phosphorous (TP) was conducted in the Norwalk River for all three sewage treatment plant effluent discharges (Sites NR 22, NR 16, and NR 9.8), as well as for 11 other monitoring sites. The nutrient surveys were conducted four times during the summer of 2008 (5/1, 6/19, 8/21, and 9/24) in conjunction with the ongoing *E.coli* bacteria survey occurring on the same dates. All nutrient tests were performed by York Laboratories in Stratford Connecticut using standard methods 4500N for TN and EPA 365.3 for phosphorus. All samples were collected and transported by HW/RW to York Laboratories (QAPP CT 02403, Appendix 1, page A1.1). NRG Inc. at Manresa Island (Norwalk) generously provided funding for the nutrient tests. While there is no CT DEP criteria for nutrients in moving waters, our survey had several objectives in mind.

The first objective was to determine the downstream nutrient impact, if any, of the three WTPs on the receiving waters of the river. The second objective was to quantity the amount of lbs of TN and TP were being discharged to the river. As part of this question, to observe if the phosphorous removal units at Site NR22 and Site NR 9.8 were working.

The average nitrogen releases (in lbs/day) from the three monitored WTP discharges can be estimated according to the formula (EV x C x 8.35) where EV equals the average effluent volume in millions of gallons/day, C equals the average TN concentration in mg/L, and 8.34 is the conversion factor.

Site	Average Effluent Volume (gallons/day)	Average Effluent Volume (million gallons/day)	Average Total Nitrogen Concentration (mg/L)	Factor	Average lbs /day of Nitrogen
NR22	700,000	.700	4.11	8.34	23.99
NR16	80,000	.080	11.6	8.34	7.74
NR9.8	50,000	.050	4.74	8.34	1.98

 Table 5 Site, average discharge volume, and average lbs/day release of nitrogen from three

 Wastewater Treatment Plants that discharge into the Norwalk River

Based on volume and TN concentration, the Site NR 22 effluent discharge produces the maximum TN impact to the Norwalk River (Figure 4, Table 5). The minimum impact is observed at Site NR 9.8 where reduced volume and TN concentration limit impact. The Georgetown WTP incorporates new *Zenon* technology and may still be undergoing startup procedures. TN output at Site 9.8 does not appear to be stabilized (Figure 4, Table 5).

No "real time" flow data is published for the USGS site at Kent Street on the Norwalk River, which precludes an assessment of TN pounds entering Norwalk Harbor. HW/RW is also unable to account for the large nitrogen spike (17.3 mg/L) observed at Site SM3 (Silvermine River) on 8/21 (Figure 4).

Phosphorous removal units are operational at Site NR 22 and Site 9.8 (Table 3). Site NR 16 continues to discharge approximately 5 mg/L TP in the effluent stream (Table 3). Although levels of TP were not generally observed at the other main river sites, a concentration of 0.13 mg/L was observed at Site NR 15 on 8/21 (Table 4). Site NR 15 is one half mile downstream from Site NR 16. Elevated TP

levels of 0.32 mg/L were also observed at Site NR 1 and reflect the input from a large on-going sewage spill at the School Street storm drain outflow (Table 4).

In conclusion, the Route 7 WTP, Site NR 16 should be modified to remove phosphorous from the wastewater effluent. Downstream impoundments such as Factory Pond at Georgetown become totally overgrown with algae each summer much to the dismay of surrounding residents. Phosphorous removal is terminated by NPDES permit as of September 30 and does not resume at Sites NR 22 and NR 9.8 until April 30. HW/RW questions the wisdom of this practice as TP is a conservative pollutant and either joins the river sediments or flows to Long Island Sound during the period of limited growth.

V. Index of Figures, Tables and Appendices:

- Figure 1 Maximum, geometric means, and minimum values of *E. coli* bacteria concentrations at 12 monitoring sites in the Norwalk River Watershed from May 2008 through September 2008
- Figure 2 Maximum, mean and minimum values for dissolved oxygen at 12 sampling sites in the Norwalk River Watershed from May 2008 through September 2008
- Figure 3 Maximum, mean and minimum value for conductivity at 12 sampling sites in the Norwalk River Watershed from May 2008 through September 2008
- Figure 4 Total nitrogen concentrations observed at 14 monitoring sites in the Norwalk River Watershed on May 1, 2008, June 19 2008, August 21, 2008, and September 24, 2008
- Figure 5 Monthly rainfall (inches) from May 2008 through September 2008
- Table 1 CT DEP criterion for *E. coli* bacteria levels as applied to recreational use, effective 12/17/2002
- Table 2 May 2008 through September 2008 *E. coli* bacteria concentrations, geometric means and % frequency exceeding 410 colonies/100 mLs at 12 sampling sites in the Norwalk River Watershed for the period of time when the two Ridgefield and the Georgetown wastewater treatment facilities are required by NPDES permits to disinfect effluent discharges
- Table 3 Monitoring sites, dates and values of DO (mg/L) not meeting the CT DEP DO criterion of 5 mg/L
- Table 4 Observed total phosphorous (TP) values at three WTP effluent discharges, and two river sites on 5/1, 6/19, 8/21, and 9/24/2008
- Table 5 Site, discharge, and volume at three Wastewater Treatment Plants that discharge into the Norwalk River

Appendix A

Table A1 Site identification, site location, GPS coordinates and town for sampling and testing (headwaters to the mouth)

Figure A2 Norwalk River testing sites

Appendix B

- Table B1 Date, time, air & water temperature, dissolved oxygen, conductivity, fecal coliform bacteria, *E. coli* bacteria, rainfall number of days prior to sampling, and QA/QC activity for monitoring events in the Norwalk River Watershed, May 2008 through July 2008
- Table B2 Results of fecal coliform bacteria counts (colonies/100 mLs H₂O) inter-laboratory services with the Norwalk Public Health Laboratory (NPHL)

Appendix C

Interpretation of graphs

Appendix D

Glossary

VI. References

Harris, R. B. and P. J. Fraboni: Quality Assurance/Quality Control Plan for the Norwalk River Watershed Monitoring Project (QA No. CT00162) (re-approved October 2001 and extending to September 2002).

US Environmental Protection Agency. 1986. Ambient Water Quality Criteria for Bacteria, US EPA 440/5-84-002, Washington, DC.

Harris, R. B. and P. J. Fraboni. 1999. Water Quality Data Final Report for the Norwalk River Watershed (June 1998 – May 1999).

Harris, R. B. and P. J. Fraboni.2000. Water Quality Data Final Report for the Norwalk River Watershed (July 1999–September 2000).

Harris, R. B. and P. J. Fraboni.2001. Water Quality Data Final Report for the Norwalk River Watershed (July 2001–September 2001).

CT DEP, Water Quality Standard 12/17/02

VII. Reporting Period

Summary report for a five month monitoring period, May 2008 through September 2008 Monthly and Quarterly progress reports are available from June 1998 through July 2008

cc: Norwalk River Watershed Initiative Committee Co-Chairs Norwalk River Watershed Association Norwalk River Watershed Towns - Conservation Commissions- Norwalk, Wilton, Ridgefield, and Redding

Appendix A

Table A1 Site number identification, site location and town for sampling and testing (headwaters to mouth), *=tributary to the Norwalk River

Site No.	Site Area	Town	GPS Coordinates
NR21	Farmingville Road at the Great Swamp outlet	Ridgefield	Latitude: N 41° 17' 40.2" Longitude: W 73° 29' 18.5"
NR20	Route 35 at Fox Hill Condos	Ridgefield	Latitude: N 41° 17' 52.1" Longitude: W 73° 29' 32.2"
NR15	Stonehenge Road at the top of the dam	Ridgefield	Latitude N 41° 18' 32.0" Longitude: W 73° 28' 8.3"
NR13	Branchville at the railroad station (Route 7)	Ridgefield/Wilton	Latitude: N 41° 15' 55.8" Longitude: W 73° 26' 27.2"
NR 9.5	Downstream of the Georgetown Wastewater Treatment Plant Old Mill Road	Wilton	Latitude: N 41° 14' 46.0" Longitude: W 73° 26' 2.5"
NR9	School Road	Wilton	Latitude: N 41° 12' 15.3" Longitude: W 73° 25' 51.6"
NR6	Near Wolfpit Road in back of the Wilton Corporate Office Complex	Wilton	Latitude: N 41° 11' 0.1" Longitude: W 73° 25' 18.4"
NR4	Upstream of Route 15 (Glover Avenue) and downstream of the Merritt 7 Office Complex	Norwalk	Latitude: N 41° 8' 3.5" Longitude: W 73° 25' 35.8"
SM3*	James Street (on the Silvermine River)	Norwalk	Latitude: N 41°8' 10.3" Longitude: W 73° 26' 4.0"
NR1	Post Road (US Route 1) adjacent to the Ash Creek Grille Restaurant	Norwalk	Latitude: N 41° 7' 10.8" Longitude: W 73° 25' 1.3"

Site No.	Site Area	Town	GPS Coordinates
NR23	Steep Brook next to South Street WTP	Ridgefield	Latitude: N 41° 17' 24.3" Longitude: W 73° 29' 35.6"
NR22	South Street WTP outfall	Ridgefield	Latitude: N 41° 17' 26.8" Longitude: W 73° 29' 29.6"

Appendix A2 Location of sampling sites located in the Norwalk River Watershed

			Air Temp	Water Temp	DO	COND	Fecal Coliform	E coli	Amount of	Days prior		Fecal Coliform
Site	Date	Time	° C.	° C	 ma/l	umho/cm	CEU/100 ml	CEU/100 ml	rain (in)	to sampling	OA/OC	CELI/100 ml
ND33	5/1/2008	1044	15.0	0.8	11 /	730	72	60	1.55	2	Dunlicato	58
NP22	5/1/2008	1044	17.0	9.0	86	765	0	0	1.55	2	Duplicate	50
NR21	5/1/2008	1107	16.0	10.4	9.1	491	68	68	1.55	2	Replicate	64
NR20	5/1/2008	1120	15.0	10.4	9.5	528	88	88	1.55	2	Field Blank	0
NR15	5/1/2008	1149	17.0	11.9	11.6	486	60	56	1.55	2		0
NR13	5/1/2008	1159	14.0	11.5	12.2	395	620	520	1.55	2		
NR9.5	5/1/2008	1159	12.0	11.9	11.5	345	102	94	1.55	2		
NR9	5/1/2008	1141	13.0	11.4	11.8	317	122	108	1.55	2		
NR6	5/1/2008	1124	15.0	10.7	12.0	310	104	104	1.55	2	Field Blank	0
NR4	5/1/2008	1105	13.0	10.7	12.0	308	128	120	1.55	2		
SM3	5/1/2008	1052	10.0	11.2	10.7	222	96	84	1.55	2	Duplicate	100
NR1	5/1/2008	1030	11.0	11.5	11.4	278	76	72	1.55	2	Replicate	80
											•	
NR23	5/7/2008	1355	25.0	15.5	n/a	798	48	40	0.23	5		
NR22	5/7/2008	1406	25.0	14.8	n/a	786	0	0	0.23	5	Field Blank	0
NR21	5/7/2008	1425	25.0	15.5	n/a	608	36	32	0.23	5		
NR20	5/7/2008	1437	26.0	22.7	n/a	649	32	28	0.23	5		
NR15	5/7/2008	1447	24.0	19.7	n/a	558	36	36	0.23	5	Duplicate	52
NR13	5/7/2008	1501	27.0	17.9	n/a	373	36	26	0.23	5	Replicate	28
NR9.5	5/7/2008	1435	22.0	17.7	10.4	349	24	18	0.23	5	Field Blank	0
NR9	5/7/2008	1413	22.0	16.8	10.8	319	32	32	0.23	5	Duplicate	42
NR6	5/7/2008	1359	23.0	16.7	11.5	321	72	68	0.23	5	Replicate	52
NR4	5/7/2008	1344	23.0	17.2	11.3	325	112	112	0.23	5		
SM3	5/7/2008	1332	22.0	15.8	10.0	238	120	96	0.23	5		
NR1	5/7/2008	1316	21.0	17.0	10.4	302	96	96	0.23	5		
										-		
NR23	5/15/2008	1031	14.0	12.6	11.1	843		76	0.08	0	Replicate	80
NR22	5/15/2008	1042	20.0	14.6	10.0	/89	0	0	0.08	0	Field Blank	0
NR21	5/15/2008	1055	17.0	14.6	10.9	638	80	/6	0.08	0		
NR20	5/15/2008	1102	17.0	15.4	13.5	6//	108	108	0.08	0		
NR 15	5/15/2008	1119	10.0	15.0	9.5	248	92	88 150	0.08	0	Duplicato	170
	5/15/2006	1102	17.0	15.0	10.0	307	100 E9	100	0.00	0	Duplicate	17Z
NR9.5	5/15/2006	1120	19.0	13.3	10.2	340		00 68	0.00	0	Duplicate	54 80
NR9 NR6	5/15/2008	1050	17.0	13.0	10.1	318	240	212	0.00	0	Field Blank	0
	5/15/2008	1035	10.0	14.6	10.4	324	240	360	0.00	0		0
SM3	5/15/2008	1035	17.0	14.0	9.6	210	144	124	0.00	0		
NP1	5/15/2008	1023	17.0	14.1	10.0	205	88	88	0.00	0		
	3/13/2000	1007	17.0	14.0	10.0	200	00	00	0.00	Ŭ		
NR23	5/21/2008	1016	18.0	11.4	10.7	628	140	140	0.24	1	Duplicate	104
NR22	5/21/2008	1026	18.0	13.9	10.3	740	0	0	0.24	1	Dupilouto	101
NR21	5/21/2008	1035	18.0	12.2	9.5	575	148	148	0.24	1	Field Blank	0
NR20	5/21/2008	1044	17.0	12.7	13.0	557	168	168	0.24	1		-
NR15	5/21/2008	1056	17.0	12.4	10.4	527	108	108	0.24	1		
NR13	5/21/2008	1113	18.0	12.0	11.0	363	104	92	0.24	1	Replicate	88
NR9.5	5/21/2008	1124	16.5	12.5	10.5	360	88	88	0.24	1	Replicate	70
NR9	5/21/2008	1107	16.0	12.0	10.5	327	104	104	0.24	1	Duplicate	94
NR6	5/21/2008	1050	17.0	12.0	10.8	320	164	148	0.24	1	Field Blank	0
NR4	5/21/2008	1029	22.0	12.2	11.0	309	228	228	0.24	1		
SM3	5/21/2008	1017	21.0	11.8	10.4	218	112	112	0.24	1		
NR1	5/21/2008	955	20.0	12.1	10.6	281	188	188	0.24	1		

Table B1 Sampling site, date, time, air & water temperature, dissolved oxygen, conductivity, fecal coliform bacteria, *E. coli* bacteria, rainfall number of days prior to sampling, and QA/QC activity for monitoring events in the Norwalk River Watershed May 2008 through July 2008

Table B1 (continued)

			Air Temp.	Water Temp.	D.O.	COND.	Fecal Coliform.	E. coli	Amount of	Days prior		Fecal Coliform.
Site	Date	Time	°C	°C	mg/L	umho/cm	CFU/100 mL	CFU/100 mL	rain (in)	to sampling	QA/QC	CFU/100 mL
NR23	6/4/2008	1035	15.0	15.8	9.1	473	3300	1700	0.79	0		
NR22	6/4/2008	1045	17.0	17.1	9.8	835	1	1	0.79	0		
NR21	6/4/2008	1057	17.0	15.9	5.8	612	2500	1800	0.79	0	Field Blank	0
NR20	6/4/2008	1107	16.0	16.2	6.2	483	3300	3200	0.79	0		
NR15	6/4/2008	1123	15.0	17.6	8.5	539	470	470	0.79	0		
NR13	6/4/2008	1135	18.0	17.4	8.4	372	680	600	0.79	0	Duplicate	670
NR9.5	6/4/2008	1141	18.0	18.2	8.7	354	400	400	0.79	0		
NR9	6/4/2008	1125	20.0	16.5	8.9	307	2600	2600	0.79	0	Replicate	n/g
NR6	6/4/2008	1110	20.0	16.7	8.4	301	1600	1200	0.79	0		
NR4	6/4/2008	1052	19.0	17.0	8.9	295	3000	1300	0.79	0	Duplicate	5000
SM3	6/4/2008	1038	19.0	17.3	8.8	226	3100	3100	0.79	0		
NR1	6/4/2008	1017	18.5	18.3	8.6	305	1600	1400	0.79	0	Field Blank	0
NR23	6/11/2008	1026	23.0	20.4	8.5	577	1200	1100	0.11	1		
NR22	6/11/2008	1035	25.0	21.0	9.3	780	1	1	0.11	1		
NR21	6/11/2008	1046	27.0	21.9	5.6	631	880	780	0.11	1	Field Blank	0
NR20	6/11/2008	1057	25.0	23.6	5.2	571	1210	930	0.11	1	Duplicate	1180
NR15	6/11/2008	1114	25.0	23.4	7.5	618	500	400	0.11	1	Replicate	400
NR13	6/11/2008	1129	25.5	23.6	6.9	420	970	730	0.11	1		
NR9.5	6/11/2008	1140	25.0	23.7	7.6	402	340	340	0.11	1	Replicate	240
NR9	6/11/2008	1125	25.0	21.9	7.8	330	500	500	0.11	1		
NR6	6/11/2008	1108	25.0	22.4	8.0	338	810	810	0.11	1	Duplicate	780
NR4	6/11/2008	1050	27.0	23.1	10.0	338	630	330	0.11	1	Field Blank	0
SM3	6/11/2008	1037	24.0	22.5	7.6	240	520	430	0.11	1		
NR1	6/11/2008	1010	26.0	24.4	8.1	328	630	500	0.11	1		
ND00	6/10/2008	1100	20.0	10.5	0.7	600	170	120	0.70	4	Denligata	200
NRZ3	6/19/2008	1100	20.0	10.0	9.7	766	170	130	0.70	1	Field Blank	200
	6/19/2006	1025	23.0	10.2	9.9	700	120	120	0.70	1		0
	6/10/2000	1025	23.0	10.0	1.3	600	200	270	0.70	1		
ND15	6/10/2008	1045	24.0	10.0	0.0	560	200	100	0.70	1	Duplicate	170
NIC 13	6/10/2008	1115	22.0	10.0	9.7	280	200	270	0.70	1	Duplicate	170
NIR 15	6/19/2008	11/0	21.0	10.1	8.0	123	12/	02	0.70	1		
NIDO	6/10/2008	113/	20.0	17.3	0.3	363	240	200	0.70	1	Duplicate	240
NR6	6/19/2008	1110	21.5	17.5	9.4	355	nink	430	0.70	1	Duplicate	240
NR4	6/19/2008	1055	22.0	18.2	10.9	363	pink	170	0.70	1	Field Blank	0
SM3	6/19/2008	1040	20.0	17.3	9.2	221	1600	520	0.70	1		v
NR1	6/19/2008	1016	20.0	18.6	9.3	273	2100	530	0.70	1	Replicate	1500
NR23	6/25/2008	1016	24.0	17.6	9.0	885	360	360	0.12	4		
NR22	6/25/2008	1029	25.0	19.5	9.1	839	0	0	0.12	4		
NR21	6/25/2008	1036	24.0	18.8	7.5	810	76	52	0.12	4	Field Blank	0
NR20	6/25/2008	1050	24.0	21.3	9.6	770	172	158	0.12	4	Duplicate	172
NR15	6/25/2008	1102	24.0	19.6	8.1	628	136	124	0.12	4	Replicate	152
NR13	6/25/2008	1113	24.0	20.0	7.8	438	410	320	0.12	4		
NR9.5	6/25/2008	1123	23.0	20.3	8.6	412	196	156	0.12	4	Duplicate	188
NR9	6/25/2008	1104	23.0	18.2	8.8	360	156	140	0.12	4		
NR6	6/25/2008	1057	24.0	19.3	8.6	361	320	272	0.12	4	Field Blank	0
NR4	6/25/2008	1041	24.0	20.7	11.6	355	400	380	0.12	4		
SM3	6/25/2008	1014	24.0	19.7	7.4	236	284	220	0.12	4	Replicate	292
NR1	6/25/2008	1014	24.0	21.5	8.7	329	212	176	0.12	4		

Table B1 (continued)

			Air Temp.	Water Temp.	D.O.	COND.	Fecal Coliform.	E. coli	Amount of	Davs prior		Fecal Coliform.
Site	Date	Time	°C	°C	ma/L	umho/cm	CFU/100 mL	CFU/100 mL	rain (in)	to sampling	QA/QC	CFU/100 mL
NR23	7/2/2008	1025	24.0	19.5	8.6	673	n/a	n/a	0.02	3		0. 0. 00
NR22	7/2/2008	1038	27.0	20.7	9.1	708	0	0	0.02	3	Field Blank	0
NR21	7/2/2008	1052	28.0	20.2	6.4	658	620	480	0.02	3	Replicate	540
NR20	7/2/2008	1100	25.0	22.2	10.3	633	500	420	0.02	3		
NR15	7/2/2008	1111	23.0	20.8	7.6	630	500	n/a	0.02	3		
NR13	7/2/2008	1132	24.0	21.4	7.6	428	pink	1100	0.02	3		
NR9.5	7/2/2008	1145	23.0	21.6	8.1	398	1980	1760	0.02	3		
NR9	7/2/2008	1132	25.0	20.0	8.7	295	n/a	n/a	0.02	3	Field Blank	0
NR6	7/2/2008	1119	25.0	20.6	8.7	327	pink	1060	0.02	3		
NR4	7/2/2008	1104	26.0	21.9	11.4	376	940	800	0.02	3	Replicate	1160
SM3	7/2/2008	1052	23.0	21.7	7.1	261	480	460	0.02	3		
NR1	7/2/2008	1031	27.0	23.9	8.8	354	2800	2800	0.02	3	Duplicate	2600
NR23	7/9/2008	1059	28.0	21.5	8.9	783	188	146	0.41	4	Replicate	176 (E. coli)
NR22	7/9/2008	1111	31.0	21.9	9.1	422	0	0	0.41	4		
NR21	7/9/2008	1120	29.0	23.2	6.0	735	240	180	0.41	4		
NR20	7/9/2008	1135	30.0	26.5	9.5	697	192	136	0.41	4	Duplicate	156
NR15	7/9/2008	1149	28.0	24.3	7.7	551	840	760	0.41	4		
NR13	7/9/2008	1203	270.0	23.9	8.3	428	268	232	0.41	4		
NR9.5	7/9/2008	1113	27.0	23.3	7.5	378	162	146	0.41	4		
NR9	7/9/2008	1056	28.0	21.6	8.1	354	80	68	0.41	4		
NR6	7/9/2008	1041	28.0	22.5	8.0	357	400	360	0.41	4	Replicate	228 (E. coli)
NR4	7/9/2008	1029	30.0	23.4	10.5	358	520	440	0.41	4		
SM3	7/9/2008	1014	27.0	22.6	7.1	245	1000	900	0.41	4	Duplicate	1180
NR1	7/9/2008	1000	30.0	24.2	8.6	346	400	200	0.41	4		
NDOO	7/47/2000	4007	00.5	40.0	0.0	010	DINIZ	140	0.00	0		
NR23	7/17/2008	1037	20.5	19.6	9.3	913	PINK	148	0.62	3		
NR22	7/17/2008	1048	29.0	20.9	9.9	792	204	252	0.62	3		
	7/17/2008	1112	29.0	20.0	0.0	793	204	202	0.62	3	Field Dlenk	0
	7/17/2008	110	20.0	24.1	0.5	700	104	00	0.62	2	Duplicate	0
	7/17/2008	1123	24.0	21.7	C.0	003	200	104	0.62	2	Duplicate	200
	7/17/2000	1054	20.0	22.3	0. 4 9.0	404	1/2	144	0.02	2		
ND0	7/17/2008	1111	20.0	22.1	0.0	270	00	00	0.02	2		
ND6	7/17/2008	1125	20.0	20.5	0. 4 8.8	301	204	168	0.02	3		
	7/17/2008	11/0	20.0	21.4	11.6	365	440	380	0.02	3	Dunlicate	440
SM3	7/15/2008	1505	30.0	23.2	6.6	236	6800	6700	0.02	3	Field Blank	0
NR1	7/17/2008	1156	28.0	25.2	8.8	339	400	270	0.62	3		•
		1100	20.0	20.2	0.0	000	100	210	0.02	Ŭ		
NR23	7/23/2008	1053	24.0	20.9	7.6	505	9100	2300	0.40	0	Replicate	10000
NR22	7/23/2008	1105	22.0	22.5	8.9	800	0	n/a	0.40	0		
NR21	7/23/2008	1118	23.5	22.2	4.3	751	11600	9800	0.40	0		
NR20	7/23/2008	1130	23.0	23.2	6.6	787	150	80	0.40	0		
NR15	7/23/2008	1142	24.0	22.9	7.3	610	900	500	0.40	0		
NR13	7/23/2008	1157	22.0	23.1	6.8	481	610	460	0.40	0	Duplicate	780
NR9.5	7/23/2008	1224	n/a	23.4	7.4	426	630	570	0.40	0	Replicate	670
NR9	7/23/2008	1210	n/a	21.1	6.4	267	430	380	0.40	0		
NR6	7/23/2008	1158	n/a	22.2	6.0	356	3800	3800	0.40	0		
NR4	7/23/2008	1140	n/a	22.7	8.2	342	6700	6100	0.40	0	Duplicate	5700
SM3	7/23/2008	1125	n/a	23.1	6.6	263	1400	1100	0.40	0		
NR1	7/23/2008	1030	n/a	23.3	7.1	307	7200	6300	0.40	0		

			Air Temp.	Water Temp.	D.O.	COND.	Fecal Coliform.	E. coli	Amount of	Days prior		Fecal Coliform.
Site	Date	Time	°C	°C	ma/l	umho/cm	CFU/100 ml	CFU/100 ml	rain (in)	to sampling	QA/QC	CFU/100 ml
NR23	8/7/2008	1034	24.0	20.2	8.6	784	n/a	260	0.34	0	4.140	0. 0. 100
NR22	8/7/2008	1043	24.0	21.8	9.1	792	0	0	0.34	0	Field Blank	0
NR21	8/7/2008	1054	23.0	21.1	3.5	753	290	190	0.34	0	Replicate	420
NR20	8/7/2008	1106	22.5	23.0	11.1	682	180	100	0.34	0	Duplicate	190
NR15	8/7/2008	1119	22.0	22.4	7.9	602	520	420	0.34	0		
NR13	8/7/2008	1133	23.0	22.3	8.0	434	450	290	0.34	0		
NR9.5	8/7/2008	1126		22.6	8.1	399	200	150	0.34	0		
NR9	8/7/2008	1115		20.8	8.3	341	130	100	0.34	0	Replicate	160
NR6	8/7/2008	1051		21.4	7.6	340	710	470	0.34	0	Duplicate	n/a
NR4	8/7/2008	1155		23.5	10.9	351	n/a	200	0.34	0		
SM3	8/7/2008	1007		22.0	7.2	221	1100	900	0.34	0	Field Blank	0
NR1	8/7/2008	948		23.2	9.3	321	/50	500	0.34	0		
	0/40/0000	4000	00 F	47.0	0.4	050	040	400	0.40			
NR23	0/13/2000	1033	20.5	17.0	9.1	010	040	400	0.12	2	Field Diants	0
NR22 ND21	8/13/2008	1045	20.5	20.0	<u>9.4</u> 5.2	810	250	200	0.12	2	Field Blank	0
NR20	8/13/2008	1106	20.0	10.0	11.6	60/	200	160	0.12	2	Renlicate	130
NR15	8/13/2008	1116	21.0	19.7	8.7	470	190	160	0.12	2	Dunlicate	200
NR13	8/13/2008	1132	21.0	19.4	8.5	446	170	160	0.12	2	Duplicate	200
NR9.5	8/13/2008	1111	23.0	20.5	8.7	400	240	220	0.12	2	Replicate	160
NR9	8/13/2008	1056	24.0	19.3	8.6	378	190	180	0.12	2	Duplicate	260
NR6	8/13/2008	1040	24.0	19.3	9.1	368	580	470	0.12	2	2 40.0000	
NR4	8/13/2008	1022	23.0	20.1	7.8	365	420	300	0.12	2		
SM3	8/13/2008	1012	25.0	19.7	7.5	217	340	290	0.12	2	Field Blank	0
NR1	8/13/2008	1000	23.0	21.0	8.2	336	n/a	550	0.12	2		
NR23	8/20/2008	1055	20.0	16.6	8.9	956	192	144	0.31	4		
NR22	8/20/2008	1107	21.7	19.7	9.1	812	0	0	0.31	4		
NR21	8/20/2008	1115	22.2	17.6	5.3	869	140	110	0.31	4	Field Blank	0
NR20	8/20/2008	1124	22.2	19.2	10.8	824	80	80	0.31	4		
NR15	8/20/2008	1134	21.1	16.8	8.5	647	268	232	0.31	4	Replicate	288
NR13	8/20/2008	1156	22.8	18.2	8.5	449	288	244	0.31	4	Duplicate	236
NR9.5	8/20/2008	1154	21.0	18.7	8.8	420	128	88	0.31	4	Duplicate	120
NR9 ND6	8/20/2008	1130	21.0	10.9	9.0	357	92	220	0.31	4		
	8/20/2008	1103	21.0	17.4	9.5	364	280	220	0.31	4	Field Blank	0
SM3	8/20/2008	1050	21.0	19.2	83	235	230	210	0.31	4		0
NR1	8/20/2008	1033	20.7	19.9	9.5	344	510	320	0.31	4	Replicate	500
	0.20.2000				0.0		0.10		0.01			
NR23	8/27/2008	1028	22.0	15.4	10.0	992	368	320	0.00	7	Duplicate	340
NR22	8/27/2008	1041	24.0	19.6	9.4	738	0	0	0.00	7		
NR21	8/27/2008	1055	24.0	16.3	4.6	795	148	140	0.00	7	Field Blank	0
NR20	8/27/2008	1110	22.0	17.2	9.3	759	48	40	0.00	7		
NR15	8/27/2008	1125	23.0	15.9	9.0	651	160	140	0.00	7		
NR13	8/27/2008	1139	23.0	16.9	8.2	230	400	360	0.00	7	Replicate	288
NR9.5	8/27/2008	1141	22.0	17.2	9.2	428	182	158	0.00	7	Replicate	160
NR9	8/27/2008	1123	23.0	16.1	9.6	354	42	38	0.00	7		
NR6	8/27/2008	1102	25.0	16.2	9.0	360	196	180	0.00	7	Field Blank	0
NR4	8/27/2008	1046	26.0	17.7	10.8	360	150	140	0.00	7		
SM3	8/27/2008	1031	22.0	18.7	8.2	247	100	68	0.00	7		
NR1	8/27/2008	1013	22.0	18.4	9.4	369	1040	760	0.00	7	Duplicate	740

			1				1	1		1		
			Air Temp.	Water Temp.	D.O.	COND.	Fecal Coliform.	E. coli	Amount of	Days prior		Fecal Coliform.
Site	Date	Time	°C	°C	mg/L	umho/cm	CFU/100 mL	CFU/100 mL	rain (in)	to sampling	QA/QC	CFU/100 mL
NR23	9/4/2008	1045	27.5	19.7	7.8	907	640	640	0.05	1	Replicate	600
NR22	9/4/2008	1100	28.0	21.4	9.1	734	0	0	0.05	1	Field Blank	0
NR21	9/4/2008	1108	31.0	21.1	5.6	763	160	150	0.05	1	Duplicate	180
NR20	9/4/2008	1120	29.0	22.2	7.9	752	216	212	0.05	1		
NR15	9/4/2008	1130	27.5	20.2	7.9	629	520	480	0.05	1		
NR13	9/4/2008	1145	28.0	20.7	7.6	400	480	400	0.05	1		
NR9.5	9/4/2008	1141	25.0	20.4	9.0	379	4000	3600	0.05	1		
NR9	9/4/2008	1125	28.0	19.6	8.9	274	2200	2200	0.05	1	Replicate	1940
NR6	9/4/2008	1110	30.0	19.8	9.2	359	1700	1700	0.05	1	Replicate	1680
NR4	9/4/2008	1052	29.0	21.3	9.5	348	840	780	0.05	1	Duplicate	n/g
SM3	9/4/2008	1042	26.0	20.9	8.6	250	148	144	0.05	1	Field Blank	0
NR1	9/4/2008	1030	29.0	21.7	9.6	371	1140	1080	0.05	1	Replicate	1500
NR23	9/10/2008	900	18.0	16.6	9.3	577	pink	400	0.57	1	Etable Diamia	0
NR22	9/10/2008	915	18.0	19.8	9.5	664	0	0	0.57	1	Field Blank	0
NR21	9/10/2008	927	18.0	17.2	1.9	400	40	30	0.57	1	Denlisete	400
NR20	9/10/2008	939	18.5	17.8	2.6	283	160	130	0.57	1	Replicate	100
NR15	9/10/2008	953	18.0	18.1	8.9	2/1	220	220	0.57	1	Duplicate	130
NR13	9/10/2008	1015	18.0	18.2	<u>8.6</u>	241	210	180	0.57	1		
NR9.0	9/10/2000	1107	19.0	19.0	9.7	220	JOO	300	0.57	1		
	9/10/2008	1140	20.0	10.3	9.2	220	200	200	0.57	1	Dunlianta	400
	9/10/2008	1056	10.0	10.2	9.1	227	420	390	0.57	1	Duplicate	400
	9/10/2008	1000	22.5	10.0	0./	230	370	330	0.57	1	Field Dienk	0
SIVIS ND1	9/10/2008	1040	19.0	10.0	9.8	220	300	330	0.57	1	FIEIO BIANK	0
	9/10/2000	1020	20.5	19.0	0.9	229	390	300	0.07	I		
NR23	9/18/2008	1050	21.0	15.8	97	861	100	100	0.62	4	Field Blank	0
NR22	9/18/2008	1058	21.0	18.8	9.6	767	0	0	0.02	4		0
NR21	9/18/2008	1107	23.0	16.1	3.7	728	140	120	0.62	4		
NR20	9/18/2008	1114	23.0	16.7	9.8	665	180	120	0.62	4	Replicate	150
NR15	9/18/2008	1125	22.0	16.7	9.0	518	180	170	0.62	4	Duplicate	180
NR13	9/18/2008	1136	21.0	16.9	9.4	389	170	160	0.62	4		
NR9.5	9/18/2008	1141	23.0	17.4	9.3	350	124	96	0.62	4	Replicate	172
NR9	9/18/2008	1128	22.0	16.6	9.5	328	120	112	0.62	4		
NR6	9/18/2008	1109	24.0	16.7	9.9	329	260	220	0.62	4	Field Blank	0
NR4	9/18/2008	1044	26.0	17.1	11.3	328	440	380	0.62	4	Duplicate	370
SM3	9/18/2008	1032	23.0	16.9	9.4	222	150	90	0.62	4		
NR1	9/18/2008	1017	23.0	17.8	10.1	307	36000	28000	0.62	4		
NR23	9/24/2008	1131	25.0	14.0	10.3	1029	212	152	0.00	7		
NR22	9/24/2008	1142	22.0	18.1	10.1	816	0	0	0.00	7	Field Blank	0
NR21	9/24/2008	1155	25.0	14.6	7.1	803	64	44	0.00	7		
NR20	9/24/2008	1210	21.0	15.9	11.4	797	108	108	0.00	7		
NR15	9/24/2008	1226	20.0	14.6	10.5	597	340	340	0.00	7	Replicate	360
NR13	9/24/2008	1247	20.0	15.4	10.5	401	160	124	0.00	7	Duplicate	172
NR9.5	9/24/2008	1248	18.1	15.7	10.2	373	236	156	0.00	7		
NR9	9/24/2008	1230	18.1	14.6	10.8	340	88	72	0.00	7	Replicate	
NR6	9/24/2008	1214	18.1	15.0	11.2	339	276	248	0.00	7	Field Blank	0
NR4	9/24/2008	1151	18.1	16.1	13.8	341	460	360	0.00	7		
SM3	9/24/2008	1137	17.5	15.2	10.1	226	192	148	0.00	7	Duplicate	164
NR1	9/24/2008	1120	17.5	17.2	11.4	325	40000	31000	0.00	7		

Table B2 Results of fecal coliform bacteria counts (colonies/100 mLs) inter-laboratory services with the Norwalk Public Health Laboratory (NPHL)

Date	Site	Fecal coliform bacteria	Fecal coliform bacteria
		counts (NPHL)	counts HW/RW Lab
5/1/2008	NR23	42	72/58
5/1/2008	SM3	112	96/100
5/7/2008	NR15	36	36/52
5/7/2008	NR9	24	32/42
5/15/2008	NR13	164	168/172
5/15/2008	NR9.5	80	58/54
5/21/2008	NR23	100	140/104
5/21/2008	NR9	82	104/94
6/4/2008	NR13	610	680/670
6/4/2008	NR4	1570	3000/5000
6/11/2008	NR20	n/a	1210/1180
6/11/20078	NR6	n/a	810/780
6/19/2008	NR15	260	200/170
6/19/2008	NR9	278	240/240
6/25/2008	NR20	232	172/172
6/25/2008	NR9.5	180	196/188
7/2/2008	NR1	n/a	2800/2600
7/9/2008	NR20	n/a	192/156
7/9/2008	SM3	n/a	1000/1180
7/17/2008	NR15	224	200/260
7/17/2008	NR4	420	440/440
7/23/2008	NR13	650	610/780
7/23/2008	NR4	10100	6700/5700
8/7/2008	NR20	n/a	180/190
8/7/2008	NR6	n/a	710/na
8/13/2008	NR15	n/a	190/200
8/13/2008	NR9	n/a	190/260
8/20/2008	NR13	n/a	288/236
8/20/2008	NR9.5	n/a	128/120
8/27/2008	NR23	n/a	368/340
8/27/2008	NR1	n/a	1040/740
9/4/2008	NR21	n/a	160/180
9/4/2008	NR4	n/a	840/ng
9/10/2008	NR15	220	220/130
9/10/2008	NR6	390	420/400
9/18/2008	NR15	160	180/180
9/18/2008	NR4	392	440/370
9/24/2008	NR13	172	160/172
9/24/2008	SM3	208	192/164

Appendix C

How to read the graphs in this report

Monitoring data are presented in this report with graphs and tables. Selected Figures and Tables are used to highlight critical parameters of the Norwalk River's water quality on either a monthly or total project basis. The following are some examples of the types of graphs and how to read them.

Graphs of Physical and Bacteria Data

Physical and bacteria data are graphed in the following way:

During a sampling period (usually a three month period) the *E. coli* colony concentration, the dissolved oxygen level and the conductivity are graphed by displaying the maximum value, the minimum value, and the mean or geomean value for each sampling site. The graph below is an example of a graph displaying *E. coli* counts

An example of a graph for maximum, geometric means, and minimum values of *E. coli* bacteria concentrations at 12 monitoring sites in the Norwalk River Watershed when the two Ridgefield and one Georgetown wastewater treatment facilities are required by NPDES permits to disinfect sewage effluent

Upstream to Downstream

^aCT DEP water quality geometric mean limit for *E. coli* bacteria level for Class B rivers

The previous graph shows the results for *E. coli* bacteria for the Norwalk River watershed. The sample sites are arranged along the bottom (X-axis), upstream to downstream, left to right. The concentration of *E. coli* bacteria forming units (CFUs) per 100 mL is arranged on the logarithmic scale along the left (Y-axis). The dashed horizontal line at 126 colonies/100 mL (left Yaxis) indicates the geomean *E. coli* criterion in the Connecticut Department of Environmental Protection (CT DEP) Water Quality Standards (WQS) that are set for Class B surface waters. The geometric mean presents results of all sample runs in a way that minimizes the impact on the entire data set by very high or very low individual results An *E. coli* geometric mean marker extending above this line exceeds the criterion. For example, every site except NR22 exceeded the geomean criterion

The graph below is an example of a graph showing maximum, mean and minimum values for dissolved oxygen at 12 sampling sites on the Norwalk River Watershed

5 mg/L dissolved oxygen = The CT DEP water quality standard for a Class B rivers

The graph above is read in the same way as the previous one. However, it displays the maximum, minimum values and the mean for dissolved oxygen levels for each sampling site during the sampling period. The dashed horizontal line shows the CT DEP water quality standard for dissolved oxygen for a Class B river. In the example above all mean values for dissolved oxygen meet the CT DEP Class B criterion for dissolved oxygen. However, Sites NR21 and NR20 had minimum readings below the CT DEP criterion.

An example of a Conductivity graph is below.

The line graph above again displays the conductivity range (maximum value to minimum value) with the mean for that range. The conductivity is recorded in micro-Siemens (uS)

Appendix D

Glossary

Dissolved oxygen: The oxygen dissolved in water and readily available to aquatic organisms expressed in milligrams per liter (mg/L) or parts per million (ppm). Connecticut's Water Quality Standards requires that the dissolved oxygen of a Class B stream shall not be less than 5 mg/L at any time.

Conductivity: Conductivity is a measure of the ability of water to pass an electrical current. Conductivity of water is positively affected by the presence of inorganic dissolved solids such as chloride, nitrate, sulfate, and phosphate (ions that carry a negative charge) as well as sodium, magnesium, calcium, iron and aluminum (ions that carry a positive charge). Conductivity is useful as a general measure of stream water quality. Each stream tends to have a relatively constant range of conductivity measurements. Significant changes in conductivity can be used as an indicator of pollution entering a stream. For example, the presence of metal trash in water and/or the use of iron pipes can increase conductivity. An elevated conductivity is measured in micromhos per cm, (μ mhos/cm) a measure of conductance equal to one millionth of a mho/cm. While there is no CT DEP criterion for conductivity, the rivers in the United States generally range from 50 to 1500 μ mhos/cm. Studies of inland fresh waters indicate that streams supporting good mixed fisheries have a range between 150 and 500 μ mhos. Conductivity values outside this range could indicate that the water is not suitable for certain species of fish or macro invertebrates.

Fecal coliform bacteria: Fecal coliform bacteria are that portion of the coliform group that originates in the intestinal tract of man and other warm-blooded animals. Fecal bacteria are used as indicator organisms, which are not usually harmful to man. Their presence indicates that pathogens (such as cholera, salmonella, etc.) may be present in surface waters. The higher the count in colonies per 100 milliliters indicates a higher probability that pathogens are being discharged to surface waters. Fecal bacteria are used because they are more universal and survive for longer periods than pathogens in water. The Connecticut Water Quality Standards for a Class B stream are as follows: As an indicator of general sanitary quality Fecal coliform bacteria shall not exceed a geometric mean of 200 organisms/100 mL in any group of samples nor shall 10% of the samples exceed 400 organisms/100 mL.

E. coli bacteria: *Escherichia coli* (*E. coli*) bacteria are one of two organisms that comprise fecal coliform bacteria. Studies have indicated that *E. coli* alone may be a more specific indicator organism of gut level contaminants to fresh surface waters from either man or animal. The other organism comprising coliform bacteria is *Klebsiella*, which sometimes occurs in soil or leaves. The EPA recommends *E. coli* as the best indicator of health risk from water contact in recreational waters.

Quality Assurance/Quality Control (QA/QC): Analytical measures taken to assure that field and laboratory work meets the highest standards of precision and accuracy. QA is an integrated management system designed to ensure that a product or service meets defined standards of quality with a stated level of confidence. QA activities involve planning quality control, quality assessment, data management and quality improvement. QC is the overall system of technical activities designed to measure quality and limit error in a product or service. A QC program

manages quality so that data meets the needs of the user as expressed in a quality assurance project plan. All scientific analysis of the Norwalk River is accomplished in accord with an EPA approved QA/QC which was re-approved on April 25, 2001 and covers the monitoring period from April 2001 through September 2001.

Water temperature: Water temperature is measured in degrees centigrade (°C). Connecticut's Water Quality Standards state that no temperature increase is allowable except when the increase will not exceed the recommended limit on the most sensitive receiving water use. In no case shall the temperature exceed 85 °F (29.4 °C), or in any case raise the normal temperature of the receiving water more than 4 °F (2.2 °C).

Rainfall: Rainfall measurements used in this report follows criteria used by the CT State Health Services. The day of sampling is referred to as day zero. Days are numbered backwards from the testing date to the first rainfall in inches prior to the testing date. For example, if a test was conducted on Monday 5/25 and the previous rain of 0.2 inches occurred on 5/18, the records would indicate 0.2 inches for the amount of rain occurring seven days before the sampling date. If the rain were continuous over the time period, for example, if 0.3 inches fell on 5/17 and 0.2 more inches fell on 5/18, rainfall would be shown as 0.5 inches occurring seven days before the sampling. Rainfall is recorded at rainfall monitoring station located at the Town Hall in Norwalk.

Storm events: Storm events are classified as rainfall exceeding one inch in 24 hours. This much rain will increase surface runoff (input) and flow through the storm drain networks. Stormwater runoff carries many pollutants to the river, especially during the first hour.

Observations: Observations are noteworthy occurrences in the river ecology such as the appearance of stranding blue-green algae, a flock of geese or fish kills. These observations can be incorporated into the data record sheets. These help provide a seasonal definition for water related problems which are not recorded elsewhere.

Seasonal Disinfection: Seasonal disinfection is action taken by a wastewater treatment plant to eliminate bacteria from the effluent discharge. Connecticut's Water Quality Standards require disinfection for the period of May 1st through September 30th at all Wastewater Treatment Plants discharging effluent into streams north of Route I-95. The process is carried out by chlorination or exposing the effluent to ultra violet light just prior to discharge. The period of this disinfection presently takes place when the public is deemed more likely to be fishing or bathing in the water.